
TshwaneLex – A State-of-the-Art Dictionary Compilation Program
— David Joffe & Gilles-Maurice de Schryver

 99

TshwaneLex
A State-of-the-Art Dictionary Compilation Program

David Joffe#, Gilles-Maurice de Schryver°, #
TshwaneDJe Human Language Technology, PO Box 299, Wapadrand 0050, South Africa#
(david.joffe@tshwanedje.com) || Department of African Languages and Cultures, Ghent

University, Rozier 44, 9000 Ghent, Belgium° (gillesmaurice.deschryver@UGent.be)

Abstract
A new state-of-the-art dictionary compilation program called TshwaneLex is briefly introduced. Core features
include user-friendliness, automatic cross-reference tracking, an advanced compare/merge function, various
levels of customisation, and provision for virtually all the world’s languages by means of full Unicode support.
TshwaneLex requires a PC with Windows 98 / Me / 2000 / XP. For full Unicode support, Windows 2000 / XP
is recommended. Storage space and memory requirements are dependant on the size of the dictionary project.

1. Introduction & Background
It is somewhat contradictory to note that although thousands of dictionaries are being
compiled at any given point in time, dedicated tools to assist lexicographers are not readily
available. Large dictionary publishers such as Collins simply build their own in-house
systems; others such as Longman or Oxford base their latest lexicography environments on
rather complex million-dollar applications that are specifically customised for them (in this
case the DPS by IDM, cf. McNamara 2003). SIL International (http://www.sil.org/) have
developed some lexicography tools that are used by field linguists only; these include
Shoebox and Toolbox, LinguaLinks, FieldWorks, etc. There have been attempts to produce
off-the-shelf lexicographic workbenches in the past – examples include GestorLEX by
TEXTware (http://www.textware.dk/) and Onoma by Lexilogik (Ridings 2003) – yet these
products still needed quite some customisation and investments before they could be used in
any real-world dictionary project. Calls for dictionary writing systems are also recurring
periodically on various lexicography and corpora mailing lists, but remain largely
unanswered. The result of this state of affairs is that too many lexicographers – freelance
compilers as well as large dictionary teams – end up storing their lexicographic gems in
simple word processors or databases of their own making.
 Against this background the need was felt at TshwaneDJe HLT (http://tshwanedje.com/)
to build a robust, truly off-the-shelf, modern dictionary compilation program with which any
dictionary maker(s) could compile reference works for any language(s). The new software is
known as TshwaneLex, and is already in use for the compilation of monolingual, bilingual
and hybrid dictionaries at several of South Africa’s National Lexicography Units, and copies
have been acquired by Macmillan, as well as by a number of lexicography projects based in
Europe. A general overview and computational aspects can be found in Joffe et al. (2003a
and 2003b respectively). A lexicographic perspective of TshwaneLex follows, and starts
with three screenshots, illustrating, inter alia, Unicode support and the use of a DTD.

EURALEX 2004 PROCEEDINGS
COMPUTATIONAL LEXICOGRAPHY AND LEXICOLOGY

 100

TshwaneLex – A State-of-the-Art Dictionary Compilation Program
— David Joffe & Gilles-Maurice de Schryver

 101

2. User-Friendly Design: Article Preview & Tree View
One of the primary design goals behind the development has been to produce a user-friendly
tool: the software should be easy to learn and as intuitive as possible to use. One of the
underlying principles for this goal is that lexicographers should not need to have a high level
of computer literacy in order to perform the day-to-day tasks of compiling a dictionary. The
level of abstraction presented to the lexicographer should be that of a dictionary article, and
not that of a database. The generic Input/Output architecture supports this idea by ‘hiding’,
wherever possible, the technical details of how the dictionary is stored.
 TshwaneLex displays, at all times, a full list of the lemma signs of all articles in the
dictionary. Clicking on a lemma sign selects that lemma for viewing or editing, and displays
a WYSIWYG preview of the currently selected lemma. This preview updates immediately
whenever changes are made. All lemma signs appearing in the preview are hyperlinked,
allowing the lexicographer to immediately select a lemma. The different fields of an article
(e.g. definitions, translation equivalents and usage examples) are displayed in different
colours. These colours are customisable, as well as the font face and formatting information
for each field type, through the use of a styles system.

EURALEX 2004 PROCEEDINGS
COMPUTATIONAL LEXICOGRAPHY AND LEXICOLOGY

 102

 Editing of lemmas is centred around a window called the tree view. This view displays
the hierarchical structure of a lemma, broken down into the various word senses, sub-senses,
combinations or multi-word units (MWUs), usage examples, cross-references, etc. that
constitute the article. By clicking on a node in the tree view, the various fields associated
with that node type are instantly displayed in the attributes window, where they may then be
modified. Nodes in the tree view may also be displayed in different colours depending on the
field type. These have the same colours as used in the article preview.
 Another important underlying design philosophy has been that any lexicography tasks
that can reasonably be automated by computer software, should be. One prominent example
is the automatic tracking and updating of changes to cross-references; this prevents many of
the problems associated with the manual tracking of cross-references. Other examples are
automated lemma reversal, and assisted dictionary error and consistency checks.

3. Extendible Input/Output (I/O) Architecture
The I/O architecture of TshwaneLex is designed to support multiple different types of data
storage mechanisms. The primary data storage type for networked (multi-user) use is a
relational database system, such as MySQL or Microsoft SQL. This is implemented
internally using Object Database Connectivity (ODBC) and Structured Query Language
(SQL). Dictionaries may also be stored in a binary file on disk, or in XML format.
 Some of the export (output) formats supported in TshwaneLex are static HTML (with or
without style sheets) and Rich Text Format (RTF) (for producing print output in word
processors such as Microsoft Word, OpenOffice and Corel WordPerfect).
 The I/O architecture has been genericised, which allows additional interfaces for
different types of data sources to be developed in the form of add-ons or plug-ins. This
allows for the possibility of custom importers to be created in cases where there may be
existing dictionary data developed in another system. Add-on modules may also be created
in order to support other output formats.

4. Importing Data, Full Dictionary Searches, Lemma Filter, Error Checks
Wordlists as well as frequency counts calculated by corpus query tools can be imported
directly into TshwaneLex. Frequency information can be used to select only a subset of the
most frequent lemmas while producing the dictionary output.
 A text search function allows the entire dictionary to be searched quickly for a particular
piece of text. This includes options such as case-sensitivity, whole-word/partial-word
matching, and support for regular expressions.
 Using the filter function, the lexicographer can specify criteria to select and work with
only a particular subset of lemmas in the dictionary database. This includes conditions for
both inclusion and exclusion of lemmas, and these may be combined. The first screenshot
e.g. shows how a simple filter may be built to extract all articles that have both definitions
and examples, as well as cross-references, yet from which all articles that either include
derivations or sound fields are subtracted. In this case there are 778 out of 8539 such articles.
 TshwaneLex further assists the lexicographer by performing automatic checks for a
variety of possible errors in the dictionary, such as incorrectly nested brackets, duplicate
translation equivalents, white-space errors, etc.

TshwaneLex – A State-of-the-Art Dictionary Compilation Program
— David Joffe & Gilles-Maurice de Schryver

 103

5. Bilingual Features: Linked View, Lemma Reversal & Customisation
While working on a bilingual dictionary, whenever a lemma is selected for viewing,
TshwaneLex automatically generates and displays clickable shortcuts to related lemmas in
the reverse side of the dictionary, i.e. to lemmas that contain as a translation equivalent the
lemma sign of the selected lemma. In the optional linked view mode, shown in the second
screenshot, this is taken a step further: whenever a lemma is selected in one language, related
lemmas in the other language are automatically displayed in the preview window of the other
language. This allows the lexicographer to immediately determine if the treatment of an
article is well balanced in both sides of the dictionary.
 Automatic lemma reversal functions provide the lexicographer with assistance in the
process of reversing lemmas by automating as much as possible. A full reversal may be
performed on an entire side in one go, or lemmas may be reversed individually. In each case,
various reversal options are provided regarding MWUs.
 Text labels used to display meta-language such as cross-reference types, parts of speech
or usage labels, are configurable. This allows different versions of the same dictionary to be
created from the same database; a bilingual dictionary, for instance, could be produced in
two different versions, each customised according to the mother tongue of the target users.

6. Cross-references: Automatic Updating of Homonym & Sense Numbers
TshwaneLex automatically keeps track of cross-references; the lexicographer does not need
to keep track of cross-references manually. Cross-reference integrity is in fact enforced in
TshwaneLex, unlike in e.g. the DPS (McNamara 2003: 9-10), as cross-reference addresses
must exist: the lexicographer cannot create a cross-reference to a non-existent item.
 Whenever a sense number or homonym number changes, TshwaneLex automatically
updates all cross-references that refer to that sense or homonym. This prevents the accidental
creation of incorrect cross-references when a sense or homonym number is modified and the
lexicographer does not also update the relevant cross-references. If in a certain language (see
the first screenshot) there is a cross-reference from monyadi to the second sense of
mokgonyana, and senses two and three at mokgonyana are swapped around, then the cross-
reference from monyadi automatically adapts to refer to the third sense of mokgonyana.
Likewise, if the singular mokgonyana is cross-referenced from the plural bakgonyana, which
is homonymous with another bakgonyana, and the two homonyms are changed around, then
the cross-reference is again resolved automatically.
 As can be seen from the same screenshot, the article preview area also automatically
displays all related articles linked by cross-references to or from the currently selected
article, allowing all cross-references to quickly be verified as the lexicographer works.

7. Teamwork: Network Lemma Locking & Dictionary Compare/Merge
When working in a team, TshwaneLex prevents multiple lexicographers from attempting to
modify the same lemma at the same time through the use of lemma locking. While one
lexicographer is working on a lemma, nobody else may work on that lemma.

EURALEX 2004 PROCEEDINGS
COMPUTATIONAL LEXICOGRAPHY AND LEXICOLOGY

 104

 A compare/merge tool allows two dictionary databases to be compared, with the
differences being shown visually, side-by-side. Differences may then be merged into or
added to the current dictionary. The dictionary compare/merge tool is particularly useful in
situations where lexicographic teams are geographically dispersed, and the option of a high-
speed network connection between team members and the main database server is
economically or logistically infeasible.

8. Extensions: Sorting, Electronic & Online Dictionary Modules, etc.
In order to be able to handle any possible strategy for the sorting of lemmas, TshwaneLex
may be extended to support new sorting methods by means of the development of plug-ins.
By default, TshwaneLex implements the ISO 14651 standard, using configurable tables.
 A module is available that allows a TshwaneLex dictionary to be published to CD-ROM,
and a PHP-based software module is also available that allows a TshwaneLex dictionary to
be placed on the Internet. See De Schryver & Joffe (2004) for more details. TshwaneLex
furthermore provides the optional capability to include a built-in spellchecker.

For future developments of TshwaneLex, please visit http://tshwanedje.com/tshwanelex/

References
De Schryver, G-M and Joffe, D. 2004. ‘On How Electronic Dictionaries are Really Used’

(see elsewhere in the current Proceedings)
Joffe, D., De Schryver, G-M and Prinsloo, D. J. 2003a. ‘Introducing TshwaneLex – A

New Computer Program for the Compilation of Dictionaries’ in G-M de Schryver (ed.),
TAMA 2003 South Africa: Conference Proceedings: 97–104. Pretoria: (SF)2 Press.

Joffe, D., De Schryver, G-M and Prinsloo, D. J. 2003b. Computational features of the
dictionary application “TshwaneLex”. Southern African Linguistics and Applied
Language Studies 21.4: 239–250.

McNamara, M. 2003. ‘Dictionaries for all: XML to Final Product’ in Online Proceedings of
XML Europe 2003 Conference & Exposition. Powering the Information Society.
Available from: <http://www.xmleurope.com/2003/>.

Ridings, D. 2003. ‘Lexicographic workbench: A case history’ in P. van Sterkenburg (ed.), A
Practical Guide to Lexicography: 204–214. Amsterdam/Philadelphia: John Benjamins.

